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CHAPTER I
INTRODUCTION

1.1 Motivation and Relevance of Report In April of 1974 the National

Aeronautics and Space Administration conducted a high altitude balloon
experiment called LACATE (Lower Atmosphere Composition and Temperdture
Experiment) which employed an infrared radiometer to sense remotely
vertical profiles of the concentrations of selected atmospheric trace
constituents and temperature. The constituents were measured by invent-
ing infrared radiance profile of the earth's horieon. The radiometer line
of sight was scanned vertically across the horizon at approximately 0.25°
per second, requiring 30 seconds to acquire a complete radiance profile.
The specifications required that the relative vertical position of

the data points making up a profile be known to approximately 30 arc
seconds. The general description of the balloon system for accomplishing
the mission is given in reference (1), refer figures 1.1-1 and 1l.1-2.

In order to fix the oriéntation of the line of sight of the
radiometer, it is necessary to be able to determine the configuration of
the platform in space, i.e. the attitude of the system. This can be accom-
plished by simulating the balloon system and using the gyro output in
conjunction with a parameter estimation process. Simulation of the balloon
system requires a mathematical model plus analysis of the model. The
required mathematical model has already been developed for use with the
system simulation process and the details are described in reference (1)
pages 9-38. The attitude of the balloon system can be determined once the

initial conditions; i.e. the initial state, is known.

1.2 Objective of the Report The main objective of thisreport will be te

develop a process to determine the unknown initial state parameters by

employing the output of the system mathematical model in conjunction with
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Figure 1.1-2 Idealized Balloon System
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the output obtained from the instrumentation system. This system consisted
of three orthogonally oriented rate gyros and magnetometer which were

fixed to the balloon platform, The development of this process involves

2 major steps. TFirst, a parameter determination process must be developed
which solves for the unknown initial state parameters of the system which,
in turn, give the best fit to the data obtained from the instrumentation
system. Second, a simulation process must be developed for computing

the state of the balloon system which can then be compared with the

actual state of the system.

The body of this report consists of 2 major parts. The first part

discusses the attitude determination process in general. The details of

this part include
(i) System Simulation Discussion of the method of solution and

computation of the output of interest (i.e. angular velocity components alohg

the platform axis).
(ii) Computation of System Natural Frequencies, Discussion of a

method for solving system eigenvalues.

(iii) Optimization Technique. Discussion of the Hocke and Jeeves

direct search method.

(iv) Verification Process. Di scussion of a method for verification of

the attitude determination process.

Tn the second part of the reportall the numerical data and results are

presented and discussed.

e et
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CHAPTER TI
ATTITUDE, DETERMINATION PROCESS

2.1 Introduction

The attitude (state) of the balloon system can be determined as a
function of time if (a) a method for simulating the motion of the system
is available and (b) the initial state is known. The system motion can
be simulated cnce the system model is determined. The initial state can
then be obtained by fitting the system motion (as measured by sensors) to
the corresponding output predicted by the mathematical model. In the case
of the LACATE experiment the sensors consisted of three orthogonally
oriented rate gyros and a magnetometer all mounted on the research plat-
form. The initial state was obtained by fitting the angular velocity
components measured with the gyros to the corresponding values obtained
from the solution of the math model.

A block diagram illustrating the attitude determination process
employed for the LACATE experiment is shown in figure 2.1~1. The process
consists of three essential parts; i.e., a process for simulating the balloon
system (block 1), an instrumentation system (block 2) for measuring the
output, and a parameter estimation process (block 3) for systematically
and efficiently solving the initial state. A more detailed discussion of

each of these parts is presented below.

2.2 System Simulation Process

The main steps in the system simulation process are shown in the block
diagram of figure 2.2-l1. They consist of (a) development of a system
model to predict state (block 1), (b) solution of the model (block 2) and
(c) developing a math model for computing the angular velocity components
of the research platform. Each of these steps will be discussed in greater

detail below.
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System math model A system math model must be obtained which enables

one to predict the motion of the system at float altitude since all forms
of output (ec.g. angular velocity, tension in the cables, cte.) can be
determined once this is known. This motion is very complex and involves
various types of oscillation inecluding bounce, pendulation and spin.
Moreover, the complexity of the motion is increased with increasing number
of subsystems.

The math model of the balloon system is complicated primarily by the
two important factors. They are as follows:

(a) ‘the balloon itself is a distributed parameter system which has
motion in an infinite fluid media. Hence, it is necessary to first
idealize it as an equivalent rigid body in order to develop a lumped parameter
model for the entire system.

| (b) The balloon system is subjected to nondeterministic wind gusts
which result in forces acting externally on the system. At the present
time very little is known about the nature of these gusts.

The exact dynamic model for the balloon itself consists of the
equations of motion for the solid (i.e. balloon fabric) and the fluid
dynamic equations. These equations are coupled through the boundary condi-
tions which must be satisfied at the interface of the solid and fluid
media. The resulting model is extremely complex and consists of a system
of coupled partial differential equations. The system model is simplified
by treating the balloon as a lumped paremeter (rigid body) element. This
is accomplished by developing approximate expressions for the aerodynamic
forces and torques which result due to the interaction between the balloon
and fluid media. These forces and torques are then treated as external
reactions on the solid system.

A linear systems model which includes the effect of the aerodynamic

reactions has been developed (3) by neglecting the effect of second order

I P
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terms. An equivalent form of this model which involves only the pendulation

angles in two orthogonally oriented planes is given as follows

[a~23 M

+ A8 =0, 2,2-1
¥+ AP =0, and 2,2-2"
"3 = 0 , where 2.2=3

ro"
%
8 = 0, . 2.2-4
8
3
L
—.H
¥y
V= v, ' 2.2-5
¢3J

ei,~wi = pendulation angles in two orthogonally oriented

planes, and

B 7]
311 212 813 .
A= a21 a22 a23 . 2.2=6
a3 a3p 333 |

The elements aij are defined in terms of the system parameters in reference
(3). The pendulation angles Oi and wi and the spin angle ¢.are-illustrated

in figure 2.2-2 and figure 2,2-3.
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Figure 2.2-3 System Pendulation Angles in X2§e Plane
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Solution of System Model. The solution to equation 2.2-1 can be obtained

by assuming the following form for 6 ; i.c.
§ = X sin 0t. 2.2-7

Substitution in to equation 2.2-1 yields the following eigenvalue problem,

i.e,
A = 925-(, where 2.2~8
X1
Ri(i =1, 2, 3 = X1 are the eigenvectors and
X3
Qi(i = 1,2,3) are the eigenvalues.

Equation 2.2-8 can be solved mumerically on the computer. A listing of the

fortran program employed to solve this equation for the particular problem

- under study is given in appendix A.

The solution to equation 2.2-2 is obtained in the same way and yields
the identical eigenvalue problem. The solution for equation 2.2-3 is
easily obtained by integrating the equation twice with respect to time (1.

The final closed form solution for 8, ¥ and ¢4 is given as

e(t) Xl(cl sin nl't + ¢, cos Ql't)

+ 5'(2(03 sin @,t + ¢, cos 921:)

+ 23(05 sin .t + c; cos 25t) 2.2-9




I3
yle) = X, (e, sin Q,t + cg cos Q,t)
+ x2(09 gin ta + ¢ cos ta)
+ X3(cll sin Q3t + ¢, cos Q3t) , and 2,2-10
¢3(t) = at + ¢3(to) , Where 2,2-11

cj(j =1,2,...,12) = unknown constants which are determined
from the initial states; i.e. §(to),

Y(to), B(to) and ¥(to),
a = constant rate of spin, and

¢3(to) = initial spin displacement.

Computation .f Balloon Angular Velocities. The relationship between the

platform motion (63, 53, w3, @3, ¢3 and $3) and the platform angular
velocity components is obtained through the application of the Euler angle
transformations to the system platform shown in figure 2.2-4. The transfor-~

mation equations are given as follows:

, = 63 cos ¢3 cos ¢3 + wa sin ¢3 '

€
|

£
]

2 -63 cos w3 sin ¢3 + ¢3 cos ¢3 ., and

=4
n

63 sin ¢3 + ¢3 s where 2.2~-12

wi(i = 1,2,3) = angular velocity components of the platform

along Ei direction,

8., = pendulation angle in the e

3 - plane,

2 %3

¥, = pendulation angle in the e plane, and

1 %3

¢, = spin angle about the 53 axis.
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2.3 Parameter Lstimation Method

The main object of the parameter estimation method is to determine
the initial system state (8. iTlo and ¢,0 ) such that the rates (%)
obtained from the rate gyros fit (over some time interval 05 t< T), in
an optimal sense, those rates ( @ ) predicted from the system model., With
this initial state determined, the instantaneous system state is obtained
simply as the output ( B(t), $(t) and ¢,(t)) of the system model. Hence,
the problem is basically one of the parameter determination in which the
initial state parameters ( 85, ¥, and ¢50 ) play the role of the unknown
parameters. For the purpose of this work, the platform rates will be fit
in a least square sense; i.e., a performance function ( ¢) will be formed
and the initial state determined such that this function is minimized.

The process will be repeated (i.e., 8, , ¥, and ¢,0 will be updated)

every T seconds. Initially T will be set equal to 30 seconds (time required

to acquire a complete radiance profile) although a study (to be conducted
in the future) will be made to determine the minimum T required such that
the necessary precision and accuracy are satisfied.

In this research, the function ¢ is formed as follows:

¢“§E :i ) ~ . 2
= 5 w, = wi)j . Wwhere 2.3-1
=1 i=l

N = number of data points taken in 0<t<T,

€
1]

angular velocity computed from system model, and

€

n

angular velocity given by the rate gyros and to be compared with

wi.

The function ¢ is clearly dependent on the initial state. This initial

state is obtained from the condition that ¢ take on a minimum; i.e., by sol-

ving the following optimization problem
min, ¢ = ¢(@). 2.3-2

The angular velocity components (wy) are obtained from the transformation




equations 2.2-12 and since §, § ,¢3 are functions of the initial state

(8., y, and 9,0 ), equation 2.3-2 can be written as

min & = ®(8,, U, 6,0) 2.3-3
Since the values of ¢ are obtained numerically (5 is given as a discrete
data point) it will be necessary to employ some direct search technique to
solve the above optimization problem. In general, the algorithm for any

direct search techniques is given as follows

B
Xo =Xo + GXO 3 (k = 1,2,35000), Where 2o3"‘+
Rok is the vector of oldcvalues,
G?Ok is a vector of increments, and
)-< k+l . .
o is the vector of improved values.

The vector Giok is found such that ¢(?ok+l) < ¢(§°k). The value of k is
incremented until Ro converges; i.e., until the nornxof'GRo satisfies some
error criteria. Figure 2.3-1 illustrates the application of equation 2.3-4
to minimize ¢ .

There are many direct search techniques for systematically determining
620. After comparing several of these, the direct search method of Hooke
and Jeeves was chosen for the following reasons, i.e., (a) the special
feature in accelerating of distance, so called pattern search, and (b)
this method is already available in subroutine form (5) and was employed
with the process outlined in figure 2.3-1. The discussion of Hooke and

Jeeves direct search algorithm is presented in section 2.u.

2.4 Hooke and Jeeves - Direct Search Method.

The Hooke and Jeeves [2] method is a simple and powerful univariant
method for finding the minimum of a function. A modification of the basic

univariant numerical search method, it involves trial explorations and then

16
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ever-expanding steps, called pattern moves, in the direction indicated by
the explorations. The method is designed to follow a ridge, so that it does
not suffer from the main disadvantages of the basic univariant approach
which can not effectively cope with ridges or sharp valleys.

The Hooke and Jeeves algorithm consists of two major phases, an
"exploratory search' around the current base point and a "pattern search"
in the direction selected for minimization. Figure 2.4-1 is a simplified
informational flow diagram for the algorithm as implemented by Wook [ul.

The steps (blocks) in this figure are as follow:

Block 1 The initial estimates for all decision variables (Xi) as well
as initial incremental changes or step sizes (AXi) in the decision variables
are provided.

~ Block 2 The objective function, #(%) is evaluated at the base point
(%) which is the vector of initial guesses (Xi) of the decision variables.

Block 3 An exploratory search (type 1) is performed next, i.e.
each decision variable (Xi) is changed in rotation, one at a time, by the
incremental amount (AXi) and the objective function is evaluated at the
new point. If this incremental fails to improve the objective function
then X; is changed by (-AXi) and the value of & (X) again evaluated as
before. If the objective function is still not improved then X; is left
unchanged, and the same procedure is employed again with X. 4. This
process is repeated until all the decision variables (Xl, XZ""’Xn) haveri
been so changed. Figure 2.4-2 illustrates the steps ir. an exploratory search
for a two dimensional problem. For each change in the .decision variable,
the value of the objective function ¢ (X) is compared with its value at the
previous point. If, upon completion of the exploratory search, none of the
changes yields an improved #(X) (i.e. Xl,Xz,...,Xn) remain unchanged , then
the stages in block 7 are performed next; otherwise block 4 is implemented.

Block 4 After completing the type I exploratory search, the new base
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point is set equal to the final base point obtained from block 3.

Block § After completing the type I exploratory search and obtaining
a new base point, a "pattern search" is made. The new value of the decision
variables define a vector, S(see figure 2.4-2), that represent a successful
direction for minimization. A series of pattern searches is now made
along this vector, usually in increments of 2|§| until $(X) no longer
decreases. The magnitude of the step sizes for the pattern search (i.e.

S'y in figure 2.4~3) is roughly proportional to the number of successes

previously encountered in each coordinate direction during:the exploratory

searches for the previous cycle. The success or failure of a pattern
move is not established until after a type II exploratory search (block 6)
has been completed. If ¢(X) does not decrease after the type II explora- :
tory search, then the pattern search has failed and a new type I exploratory
search (block -3) is made in order to define a new successful direction. i
The base point for a pattern search in the case of a two dimensional problem
is illustrated in figure 2.4-3.

Block 6 The type II exploratory search (figure 2.4-3) is made after
a temporary exploration point is obtained from a pattern search. The
chief difference between the type I and type II exploratory searches is the
magnitude of the step sizes (AXi). In the case of the type II exploratory
search, 4X; is taken as some multiple of the AX, (i.e. Ci(A X;), see figure
2.4-3) used in the type I exploratory search. This is done in order to
accelerate the search.

Block 7 If the type I exploratory search fails to give a new success-
ful direction, then the current |ax i| is compared to some preset allowable
tolerance (error input in block 1), If |ax, | is larger than the allowable
error, then block 8 is implemented. Failure to imrrove ¢ (R) for |ax i|

smaller than the allowable error indicates that a lccal optimum has been
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reached and the search is terminated.

Block 8 If |Ax 1] is still larger than the prespecified error, then
| ax il is reduced gradually until the type I exploratory search can be em=
ployed to define a new successful direction.

Tn order to terminate the search, two additional basic tests must he
satisfied. These are described as follows:

(i) After each exploratory and pattern search, the increment in the
objective function [a¢| is compared with a prescribed test value. If this
increment is less than the test value, then the exploratory or pattern
search is said to have failed. In this case block 3 or 7 is implemented.

(ii) If |a¢| dis greater than the prescribed test value, then a test
is made to determine if the objective has increased (a failure) or decreased
(a successful search). This second test ensures that the values of the
objective function is always being improved.

The fortran coding for the Hocke and Jeeves method has been provided
(with some minor revision) by M.I.T. Joint Computer Facility. This is given
in appendix B. The program is available in subroutine form with various
parameters in the calling sequence. These parameters include

(i) the number of decisioi variables (n),

(ii) the initial guesses of the variables (xl,x?_,... ,xn),

(iii) the .equired accuracy (ERR),and

(iv) the allowable number of allowable iterations.

2.5 Test Problem

In order to verify the accuracy and precision of proposed parameter
estimation process (refer section 2.3) it is necessary to employ the process
to a test problem in which the initial state is already known. Preferably,
the test problem model should be identical to the one employed in this

study; i.e. equations 2.2-i to 2,2-3. With the initial state known, the
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resulting values of'e,, y,, 4., éa, §, and ia which determines the

state of the platform (as a function of time) can be obtzained from equaticns
2.2-9 to 2.2-11. With these, the values of wys Wy and wy can be computed
from equation 2.2-12,

The testing process will consist of the following steps.

(a) Assign fixed values to the initial state parameters 3 (0), ¢ (0),
3(0) and i(o), or equivalently to the unknown constants ¢;,Cys,..Cy5 in
equations 2.2-9 and 2.2-10.

(b) Compute the orientation (state) of the platform e, 63, Yy ¢3, ¢y
and &3 as a function of time by employing equations 2.2-8 to 2.2-1l.

(¢) Determine the values of @), W, and Tu'3 as a function of time by
substituting the results from part (b) into equation 2.2-12.

(d) Employ the results (sampled at various times) from part (c) as
input to the parameter estim&tion process and utilize this process to
recover the initial state values (or unknown constants Cys Cpaerey °12)'

The accuracy and precision of the process can be determined by com-
paring the results of part (d) to the corresponding assumed values of part
(a). The testing procedure can be repeated for various sets of input

values. A flow chart illustrating the test process is given in figure 2.5-1.
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CHAPTER TTI
RESULTS AND CONCLUSIONS

3.1 Data for LACATE Mission

Balloon and System Data. Figure 1.1-1 illustrates the actual lacate

balloon system and figure 1.1-2 illustrates the corresponding idealized
system used in this study. The values for the various lengths and masses
of the idealized system are given in table 3.1-1.

The actual design profile of the balloon at float altitude is
illustrated in figure 3.1-1 and the corresponding dimensions are given
in table 3.1-2. Values for (a) mass center, (b) center of volume, and
(c) moment of inertia (at the mass center) of the balloon were computed and
these values are presented in table 3.1-3 along with other balloon pro-
perties.

Standard Atmosphere Data. Figure 3.1-2 illustrates the U.S. Standard

Atmosphere and the corresponding properties are presented in table 3.1-4.
Table 3.1-5 presents the actual properties of the atmosphere at the float
altitude (47 kilometers).

Math Model Data. The expressions for the element of A matrix of

equations 2.2-1 and 2.2-2 for the system model are given in reference (3).
The numerical values for these elements were computed based on the data
given above and these values are presented in table 3.1-6.

Gyro Data. The platform coordinate axis which were employed for
referencing the angular velocity components (as measured by the instrumen-
tation package) do not coincide with the coordinate axis used in the Euler
angle transformation equation (2.2-12). The relationship between these two

coordinate systems is shown in figure 3.1-3. The resulting transformation

equations which relate the angular velocity components are given as

26




(dl = "‘wl [} 301"1
Wy = Uy and 3.1-2
wy is the angular velocity component along the Xs
axis, and
'u‘s'i is the cofresponding angular velocity component
obtained from the gyro.
The numerical values of the angular velocity components obtained from
the gyro system are presented in appendix C. Typical plots of the angular
velocity components obtained from the gyros are illustrated in figures
301-1‘} 'tO 3‘1-60
The azimuth angle ¢mobtained from the magnetometer was measured
clockwise from magnetic north to the negative X, platform axis. However,
the angle ¢ in equation 2.2-11 is measured counter-clockwise from north to
the same negative X, platform axis. This is illustrated in figure 3.1-7.
The transformation equation relating these two angles is given as
¢ = 360° - 4>m s wWhere 3.1-4

¢ is the spin displacement in equation 2.2-11, and
o is the spin displacement measured by the magnztometer.

A typical plot of the azimuth angle ¢ is shown in figure 3.1-8.

Eigenvalue Problem. The solution to the eigenvalue problem (equation 2.2-8)

was obtained by employing the camputer program given in appendix A in con-

junction with the coefficients preseited in table 3.1-6. The solution for

the eigenvalues Q; and corresponding eigenvectors is presented in table 3.1-7.

The magnitude of Q i is equal to the natural frequency of the system.
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TABLE 3.1-1
TIdealized LACATE System Properties

(maximum radius of the balloon) = 248,989 ft.

(distance from center of mass of balloon shell to mass ml) = 222.091 ft.
(distance from mass my to n12) = 75 ft. ‘:
(distance from mass m, to my) = 15 ft. ;

(distance from center of mass (C.G.) to center of volume (C.V.)) = 23.712 ft.

(mass of balloon shell) = 2850 lbm

(lumped mass) = 135 1b
(lumped mass) = 135 lb
(lumped mass) = 375 lb
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Table 3.1-2

Balloon Profile Data

50

HEIGHT-2Z RADIUS~xr FABRIC WT. --WZ

(ft) (ft) (1lbs)
.0 .2 .0
10.6 32.2 42.2
21.9 63.8 102.8
34.3 95.1 181.8
46.8 122.2 267.2
62.9 151.7 380.7
81.9 179.5 511.6
104.4 204.4 658.6
130.7 225.4 €13.7
160.5 240.7 991.¢
193.1 248.9 1171.3
226.6 248.8 1353.3
258.9 240.1 1532.5
287.9 223.1 1703.9
311.7 199.4 1862.8
329.4 170.9 2005.7
340.9 139.3 2130.2
347.4 106.4 2315.5
350.4 72.9 2491.0
351.0 .0 2850.0
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TABLE 3.1-3
BALLOON PROPERTIES

Ty (maximum radius) = 249,989 ft.

Zo (height, corresponded to ro) = 209,526 ft,

VH (inflated volume)

45,378,282 cu. ft.
l I (inflated height)

350.1 ft.

m (total weight of balloon shell including top cap weight) = 2880 1bs.
Gore length = 674.83 ft,

Surface area = 635,711 sq. ft.

Zy (distance from bottom apex to the mass center of balloon shell) = 222,091 ft.
Zo (distance from nadir to center of volume) = 198.379 ft.

t (thickness of balloon shell (strato fihnCD) = 0.0006 inch.

IOl (moment of inertia at the mass center (C.G.) = 2.622374 % 108 slug-ft2

PRSP
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Figure 3,1-2 U.S. Standard Atmosphere (6)




Table 3.1-4

General Properties of the U.S. Standard Atmosphere (6)

.

ALTl. - TEMPER- LAPSE
. TUDE, ATURE  TYPE OF RATE &, PRESSURE  DENSITY
(m) (© ATMOSPHERE (C/km) (m/sec?) ° p(N/m?) plkg/m>)
0 15.0 v 1013 x 10°  1.225
: . Polytropic -6.5 9.790 1.235
1,000 -56:5 2263 x 10*  3.639 x 107"
. Isothermal 0.0 9.759
20,000 -56.5 5475 x 10°  8.804 x 1072
. Polytropic +1.0 9727 0972
32,0000 =445 : 8.680 x 10% - 1.323 x 1072
. Polytropic +2.8 9.685 0.924 .
47000  -25-° 1.109 x 102 1427 x 107}
Isothermal * 00  9.654 . . :
$2000  -2.5 5900 x 10'  7.594 x 10°*
Polytropic -20 9.633 1.053
61,000 —205 1821 x 10' 2511 x 10°*
Polytropic ~40 9592 11436 - _
79,000. =92.5 1.038 2.001 x 10-3
- Isothermal 0.0 9.549
88,743 -92.5 1644 x 107" 3,170 x 10~

C = temperature in degrees Centigrade

km = Killometers

n

n

g

polytropic exponent

local acceleration of gravity

33
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TABLE 3.1-5

Properties of Atmosphere at float Altitude (47 km)

. s o -6 sl
Pog (density of air) = 2.78 X 10 F:%g

. . -7 sl
Poy (density of helium) = 3.834% X 10 ﬁ%g

- 1b
Py (pressure) = 2.254 ?-_E2

Cp (viscous drag coefficient) = .5
ft

g (gravity) = 31.7 a2
.Q . ) - -7 _lgn
Mg (viscosity of air) = 3.57 X 10 o sec
=7 1bp

My (viscosity of helium) = 3.74 X 10 T, sec.
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TABLE 3.1-6

Coefficients of A Matrix [Equation 2.2-1 § 2.2-2]

- -2

i = _5.08078 X 1072

_5.07147 X 107°

- _3.85241 X 1072 __
1.74685

= -7,98370

0.0

-1.17407
7.98370




Pa A e R SR
3 "

%1e
Direction along
magnetomater
. boom. }
%26
X $
X3a

X; = coordinate system employed for purposes of math model.

X;q = &yro coordinate system.

Figure 3.1-3 Gyro vs Math Model Coordinate System
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TABLE 3.1-7

Solution for the Eigenvalues Qi and Corresponding Elgenvectors.

<

1.296692X10

1

9.08376
0.987918
1.000

7.06643uxX10"

1

~7.550639X10"2

0.937u57
1.000

3.038977

6.555123x10 "

- .156788
1.000
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‘ 3.2 Evaluation of Parameter Determination Process

The process for evaluating the attitude determination process by
employing a test problem was discussed in section 2.5. The form of the
, math model for the test problem was identical to the system model given in
equation 2.2-1 through 2.2-3. Several different sets of unknown constants
(8i> were assumed and the resulting angular velocity components ('o?i) were
computed by employing the solution equations 2.2-8 to 2.2-11 and the trans-
formation equation 2.2-12, These values of 'Bi were input to parameter

determination process which was then employed to recover the unknown con-

T T T e e

stants.

Table 3.2-1 gives the results for one test case. These results indi-

cate that the process is capable of recovering the unknown constants s
with good precision. The results presented in table 3.2-1 are typical of
those obtained for other test cases. Hence one can conclude that the process
is suitable for evaluating the attitude of the LACATE system.
During the next stage of the research, the process will be employed
(in conjunction with the math model given in egs. 2.2-1 - 2.2-3) to deter-

mine the angular velocity components of the platform of the LACATE balloon

system. These values will then be compared to the actual data in order to

evaluate the system model. Results will be presented in the next report.
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APPENDIX A

Fortran Coding for Computation of Eigenvalues and Eigenvectors (Eq. 2.2-8).
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APPENDIX B

Fortran Coding for Hooke and Jeeves Direct Search Method.
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